Gaia reveals how Sun-like stars turn solid after their demise

Internal structure of a white dwarf star, artwork. A white dwarf is the fate that awaits all low-mass stars such as the Sun. They are essentially the remains of the original star's core, compressed to very high densities about a million times that of the original star. They do not generate heat, but remain balanced against gravitational collapse by this high density, which generates a so-called degeneracy pressure. White dwarfs are composed of plasma, a fluid of electrons and neutrons. As they cool, they solidify from the centre outwards, forming a growing core of crystalline material called a body-centric lattice, a cubic-crystal system.

Data captured by ESA’s galaxy-mapping spacecraft Gaia has revealed for the first time how white dwarfs, the dead remnants of stars like our Sun, turn into solid spheres as the hot gas inside them cools down.

This process of solidification, or crystallisation, of the material inside white dwarfs was predicted 50 years ago but it wasn’t until the arrival of Gaia that astronomers were able to observe enough of these objects with such a precision to see the pattern revealing this process.

“Previously, we had distances for only a few hundreds of white dwarfs and many of them were in clusters, where they all have the same age,” says Pier-Emmanuel Tremblay from the University of Warwick, UK, lead author of the paper describing the results, published today in Nature.

“With Gaia we now have the distance, brightness and colour of hundreds of thousands of white dwarfs for a sizeable sample in the outer disc of the Milky Way, spanning a range of initial masses and all kinds of ages.”

It is in the precise estimate of the distance to these stars that Gaia makes a breakthrough, allowing astronomers to gauge their true brightness with unprecedented accuracy.

White dwarfs are the remains of medium-sized stars similar to our Sun. Once these stars have burnt all the nuclear fuel in their core, they shed their outer layers, leaving behind a hot core that starts cooling down.

These ultra-dense remnants still emit thermal radiation as they cool, and are visible to astronomers as rather faint objects. It is estimated that up to 97 per cent of stars in the Milky Way will eventually turn into white dwarfs, while the most massive of stars will end up as neutron stars or black holes.

The cooling of white dwarfs lasts billions of years. Once they reach a certain temperature, the originally hot matter inside the star’s core starts crystallising, becoming solid. The process is similar to liquid water turning into ice on Earth at zero degrees Celsius, except that the temperature at which this solidification happens in white dwarfs is extremely high – about 10 million degrees Celsius.

In this study, the astronomers analysed more than 15 000 stellar remnant candidates within 300 light years of Earth as observed by Gaia and were able to see these crystallising white dwarfs as a rather distinct group.

Sources:

ESA

Leave a Reply

You have successfully subscribed to the newsletter

There was an error while trying to send your request. Please try again.